Precision Position Control of Servo Systems Using Adaptive Back-Stepping and Recurrent Fuzzy Neural Networks
نویسندگان
چکیده
To improve product quality in high-tech industrial fields and in precision product processes, high precision position control systems have been developed. However, high precision position control systems have been faced with a friction problem that exists between the contact surfaces of two materials and produces an obstacle to the precise motion, because the friction is very sensitive to nonlinear time-varying effects such as temperature, lubrication condition, material texture, and contamination degree. Thus, the tracking performance of servo systems can be seriously deteriorated because of the nonlinear friction characteristics.
منابع مشابه
High-Precision Intelligent Adaptive Backstepping H∞ Control for PMSM Servo Drive Using Dynamic Recurrent Fuzzy-Wavelet- Neural-Network
This paper proposes a high-precision intelligent adaptive backstepping control system (HPIABCS) for the position control of permanent-magnet synchronous motor (PMSM) servo drive. The HPIABCS incorporates an ideal backstepping controller, a dynamic recurrent-fuzzy-wavelet-neural-network (DRFWNN) uncertainty observer and a robust H∞ controller. First, a backstepping position controller is designe...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملImage Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملRobust Petri Recurrent-Fuzzy-Neural-Network Sliding-Mode Control for Micro-PMSM Servo Drive System
This paper proposes an intelligent hybrid control system (IHCS) for identification and control of micro-permanent-magnet synchronous motor (micro-PMSM) servo drive to achieve high precision tracking performance. Based on the principle of computed torque control (CTC), a position tracking controller is designed and analyzed. Moreover, to relax the requirement of the lumped uncertainty, an IHCS i...
متن کاملDSP-Based Intelligent Adaptive Control System Using Recurrent Functional-Link-Based Petri Fuzzy-Neural-Network for Servo Motor Drive
This paper presents an intelligent adaptive control system (IACS) using a recurrent functional-linkbased Petri fuzzy-neural-network (RFLPFNN) for induction motor (IM) servo drive to achieve high dynamic performance. The proposed IACS comprises a RFLPFNN controller and a robust controller. The RFLPFNN controller is used as the main tracking controller to mimic an optimal control law while the ro...
متن کامل